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Outline

Challenges in Optimization from Energy Perspective

1. Motivation
Next-Generation Power Grid
Decision-Making Hierarchy
Who? Domains? Frequency?

2. Optimization Issues
Models and Complexity — LP/QP, NLP, MPEC, MI(N)LP

Uncertainty Quantification - Data Assimilation and Machine Learning
Dynamics and Decentralization -Gaming-

3. Conclusions
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Motivation

Current Grid Control Center
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~70% Electricity from Coal — CO, Emissions
Limited Market Control — Demands are Inelastic, No Storage
~20% Energy Losses - Transmission, Demand Shedding, and Wind Curtailment



Motivation

Control Center

Next-Generation Grid
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Major Adoption of Renewables -30%-

Elastic Demands, Distributed Generation and Storage, Real-Time Pricing

All Players use Optimization — How to Coordinate Time-Scales?



Motivation

Decision Making Structure and Optimization Tasks

Transmission/Generation Expansion: ISO, Yearly, MILP | Planning

\ 4
Unit Commitment: ISO, Daily, DC Flow, MILP

Day-Ahead Bidding: GENCOs/Utilities, Daily, LP/QP

Economic Dispatch: ISO, S Minutes, DC Flow, LP/QP Markets

Real-Time Bidding: GENCOs/Utilities, S Minutes, LP/QP
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AC Power Flow: ISO, 1-2 Minutes, NLP

State Estimation: ISO, 1-2 Minutes, QP/NLP

Generation Control: GENCOs, Seconds, QP/NLP Control

Voltage and Dynamic Stability: ISO, MilliSeconds, No Optimization
Energy Management: Utilities/Consumers, Seconds/Minutes, LP/QP/NLP
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ISO

Y

ON/OFF
Power Levels

Demand Bids

Supply Bids

€--------- o~ — - >
Clearing Prices

‘*:/u ‘"-/ L
: W’ 1 . >

;1

Transmission

Weather -Forcing-

Dynamic & Uncertain Forcing Factors -Weather- Drive Markets




Motivation

Supply (Wind) and Elastic Demands Vary at Higher Frequencies

Power [MW)]

-1 Load

2\ [\ 30% Wind

\ | 20% Wind

\110% Wind

Time [hr]
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Anticipating Forcing Factors is Critical -Minimize Reserves-

Longer Foresight Horizons and Faster Updates Needed



Motivation
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Western
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Eastern
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° Longitude W
Texas Interconnect

Interconnect Level Transactions - Key for High Efficiency and Lower Prices

- Hydro, Wind, Geothermal, Solar, Eastern Demands
Transmission Network Expansion - Need Infrastructure to Enable Exchanges



2. Optimization Issues



A Canonical Model

Transmission/Generation Expansion
Horizons of 10 to 20yr — MILP with O(10%) Integers & O(10%) Continuous — Memory Constraints

Day-Ahead and Real-Time Market Clearing
Horizons of 1 to 36hr — MILP with O(10%) Integers & O(10°) Continuous — Time Constraints

-_k_G_T_Jﬁ_g. __________________________________________________ .J_E_ﬁ _________________ -

st '_G:'{E}E@ZEZA@}I’E:6:7:9:6:?:::::3 Dynamics -Ramps- ~ Cost Function
IS SRETIES Soves e v B
:(i,j)eﬁj 1€G; i€D; | o9 ﬁ" Yy
ilpk,z',j_ bij (O i — Ok )| < M, ;- YIHJ,kaT (4,7) eﬁ. 2 ‘i?° S e

1 g
---------------------------------------------- - g ° 03~~o/
0 <Gy <Gr. ykﬂ-, keT,j€q Network

|AGy ;| < AGT™ .yl ke T,jeg

° Latitude N

|Pk’z | < Pmaa: ylg,i,ja k S Ta (7'7.7) S L

k4+UT—-1

> ij > UT (ykG+1,j —yﬁj), keT,jeg
=k
k+DT—1
Z (1 - ygj) = DT <y’€aj - ykG-i-l,j) , keT,j€g ° Longitude W
=k

Key Extensions: Stochastic, AC Power Flow (MINLP), Gaming, Contigency



Economic DisBatch

Real-Time Market Clearing
Sets Locational Marginal Prices (LMPs) in Interconnect
Solved Every 5 Minutes, 15 Minutes Foresight
Large-Scale LP/QP - O(105-10%) Continuous, Core of Unit Commitment
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Benchmark System —Illinois- 1900 Buses, 2538 Lines, 870 Loads, and 261 Generators
Daily Generation Cost ~ $O(103)



Economic DisBatch

Effect of Foresight on Costs
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Potential Savings of $O(108)/Yr — Increase with Wind/Demand Variability

Savings Constrained by Time Resolution -Desired 5 min-




Economic DisBatch

Computational Performance — Linear Algebra and Warm-Starts
IPOPT- Symmetric KKT Matrix (MA57) vS. CPLEX-Simplex — Basis Factorization/Updates
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Basis is “Robust”

Warm-Start Strategy - Construct Basis for Simplex -In Advance, With Forecast-
Largest Problem Solvable in 5 Minutes - 20 Hr Foresight, 240 Steps, 5 Min/Step, 1x10° Variables




Stochastic Economic Dispatch

Uncertainty Handled Through Reserves -Currently 10% of Demand-Conservative & Expensive

Stochastic Optimization Can Make Reserves Adaptive - e.g., Day-Night Wind/Demands
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Main Bottlenecks : Number of 1%t Stage Variables, Scenarios, Block Size



Stochastic Economic Dispatch

PIPS, IPOPT, OOPS:

Barrier, Coarse Linear Algebra Decomposition, Distributed Memory
PIPS: OOQP Gerz & wrighty, Schur Complement-Based, Dynamic Load Balancing

* Bottlenecks and Latency of Forming and Factorizing
Schur Complement Avoided with Iterative Solver and
Stochastic Preconditioner peira & Anitescu, 2010a

* Problem with O(107) Variables (No Network) - 600
Times Faster Than Serial on 1,000 cores

* Strong Scaling on 2,000 cores with O(10%) Total
Variables and O(10°) First-Stage Variables
ScaLAPACK Petra & Anitescu, 2010b

* However, Speed-ups not Enough for Use in MILP

* Key Questions:
- Fine-Grained ParalleliSm-Network, Multi-Core, BlueGene-
- Is Probability Distribution Correct?
- What if Scenario Generation is Expensive?
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Uncertaintx Quantification

Major Advances in Meteorological Models (WRF)
Highly Detailed Phenomena - PDEs
High Complexity 4-D Fields (10%- 108 State Variables)

Model Reconciled to Measurements From Meteo Stations

Data Assimilation Every 6-12 hours:
Optimization Based : 3-D Var couriier, er.al. 1998, 4-D Var Navon et.al., 2007
Simulation Based : Ensemble Kalman Filter Eversen, er.al 1998

http://www.meteomedia.com/

http://www.emc.ncep.noaa.gov/gmb/ens/

Is WRF Computationally Practical Enough for Market Operations?




Uncertaintz Quantification

Data Assimilation (Least-Squares) A/ (¢ 0, 11 E) Forecast (Sampling)
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Forming Covariance Matrix is Impractical -Size of State Space- Constantinescu, et.al. 2009
1) Use Only Most Relevant States (Adjoint Analysis)

2) Propagate Samples through WRF Model ID Size Grid
#1 | 130 x 60 | 32km?

Making WRF Computationally Feasible #2 | 126 x 121 | 6km?
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Uncertaintx Quantification

Validation Results (Illinois, 2006) with NOAA Data 23]
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Stochastic Optimization and Uncertainty Q

Uncertainty Quantification
WRF
Model
— Data |  Ensemble
Assimilation Reanalyzed Generator
3 State Field .
wind Speed
Measurements I Samples
Meteo Stations
Wind Power Curve
Samples
L y
Weighted )
Average Un_lt
Resampling Wind Power Commitment
Sample Batches
| ON/OFF
States
Inference | g Energy
Analysis N Cost Dispatch
Function Power Level
Cost Lower and y Set-Points
Upper Bounds
Thermal Power
Stochastic Optimization Generators

Key: Probability Distribution and Number of Samples Must be Adapted in Real-Time



Stochastic Optimization and Uncertainty Q

Aggregated Power Profiles -Validation with Real Data-
/Demand
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- WRF Forecasts are -In General- Accurate with Tight Uncertainty Bounds

- Inference Analysis Reveals that 30 WRF Samples are Sufficient
Cost ~ $474,000, Upper Bound o? (1,082 $?), Lower Bound o2 (1,656 $?)

- Excursions Do Occur: Probability Distribution of 374 Day is Inaccurate!

Higher Frequency Data Assimilation (1 hour)? Missing Physics? 100m Sensors?

Key Area: Real-Time Algorithms for Data Assimilation



Building Enerey Management

BuildinglQ

Collaborative Project: Argonne-Building 1Q
“Proactive Energy Management for Building Systems”

Mike Zimmermann, Tom Celinski, Peter Dickinson (BIQ), and Victor M. Zavala (ANL)




Building Energy Management

Utility
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~50% of U.S. Energy Resources -Gas, Electricity- Go to HVAC

EMS Needs to Forecast & Optimize Demand as a Function of Weather and Market Prices
Management of New Technologies (Batteries, PHEVs, Photovoltaic, Demand-Response)



Building Energx Management

Machine Learning Model

Outputs

Inputs |:> Energy Demands

Building System

* Real-Time Optimal Control Problem with Machine Learning Model -NLP-
Solved Every 10 Minutes, Foresight of 2 Hours
Building Model Re-Trained Daily
Machine Learning Key for Large-Scale and Cheap Deployment

* Trade-Off: Comfort vs. Energy Demands vs. CO, emissions

* Exploit Sensor Information: Occupant Tracking, Disaggregate Demands



Building Energx Management

Occupant Tracking, TCS Building at Argonne skow, Domagala, Cattlet. 2010
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Machine Learning

Gaussian Process (GP) Modeling Rasmussen, et.al. 2001

Building System

1. Input-Output Data Sets: X, Y
2. Covariance Structure : V(X X;,n) 1= no +m1 - exp (—=[1X; — X,[|?)

3. Apply Maximum Likelihood: logp(Y|n) = —%YV_l(X, X, n)Y—%IOg det(V(X,X,n))

4. Posterior Distribution: Y7 = V(XZ, X, 7 )V I(X, X, 7)Y Forecast Mean
VP = VXP XP ) - V(XP, X, n )V I(X, X, n*)V(X, X, 7*) Covariance

Key Challenge: Handling Covariance Matrix -Large, Nonlinear, and Dense-



Building Energx Management

Py Comfort Regions
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BuildinglQ EMS Implemented at Argonne’s TCS Building
Expected Yearly Savings of ~30% on HVAC Energy — $O(10)



Load [MW]

Dvnamic Electricity Markets
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- GENCOs and Utilities Bid in Day-Ahead and Real-Time Markets
- ISO Clears Markets To Maximize Social Welfare
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Generator States are Propagated in Time — Ramps and Foresight Affect Market Stability




Dxnamic Electricitz Markets

Supply Function-Based Dynamic Game Models xannan & 7., 2010
- Linear Complementarity Problem: Economic Dispatch (LP) + GENCOs (LP)
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Dvnamic Electricity Markets

Identifying Non-Gaming Behavior
Some Players -Intentionally or Unintentionally- Bid Suboptimally
Introduces Noise in Equilibrium — Can be Inferred from Data
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Huge Potential for Dynamic Market Models
- Mechanistic Price Forecasting, Interconnect Level Transactions
- Fundamental -Market Stability- and Algorithmic Questions -Incomplete Gaming-
- Extensions to Integers Needed: Unit Commitment + GENCOs Problems, Interconnects



3. Conclusions



Conclusions

Next-Generation Power Grid
- Higher Frequency Dynamic Forcings
- Market Decentralization
- Huge Savings -Emissions, Prices-

Optimization Needs
- Distributed Algorithms for Games (LP/QP,MILP)

- Fast Algorithms for Machine Learning and Data Assimilation
- Capturing Physics in Markets — AC Power Flow, NLP, MI(N)LP
- Linear Algebra : Fine-Grained Parallelism, Alternatives to Simplex and Barrier

- Realistic Models and Testing (Closed-Loop) for Benchmarking

Other Areas
- Integration of Electricity, Water, and Natural Gas Markets Shahidenpour, et.al. 2009
- Sensor Design, Placement, and Observability - Grid, Buildings —

- Contigency Analysis Pina, et.al. 2010
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Motivation

° Latitude N
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Weather, Demands, and Generation Exhibit Complex Spatio-Temporal Correlations

Correlations Must Be Captured For Efficient Forecasting



Inference Analysis

Integration Uncertainty Quantification and Stochastic Optimization
- Forecast Probability Distribution is NOT in Closed-Form
- Generating Each Sample is Expensive : 50-100 Practical

M
Cost Confidence Intervals Elo; (pwmd e)] ~ Ly = — Z wmd e

Var[ L( wzndﬁ

dl
Vo1 Z< (2™ = Lap)?
How to Generate More Samples?
1) Sample Weights on Hyperplane %ws,f =1 and Compute p.7" = w, plind
S SES
2) Solve Stochastic Problem with )/ Batches of Realizations -



Stochastic Optimization and Uncertainty Q

Illinois Study -Wind Adoption 20%- 43
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